Deformations and generalized derivations of Lie conformal superalgebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivations of Orthosympectic Lie Superalgebras

In this paper we describe the derivations of orthosymplectic Lie superalgebras over a superring. In particular, we derive sufficient conditions under which the derivations can be expressed as a semidirect product of inner and outer derivations. We then present some examples for which these conditions hold.

متن کامل

Universally defined representations of Lie conformal superalgebras

We distinguish a class of irreducible finite representations of conformal Lie (super)algebras. These representations (called universally defined) are the simplest ones from the computational point of view: a universally defined representation of a conformal Lie (super)algebra L is completely determined by commutation relations of L and by the requirement of associative locality of generators. W...

متن کامل

Deformations of Lie algebras using σ-derivations

In this article we develop an approach to deformations of the Witt and Virasoro algebras based on σ-derivations. We show that σ-twisted Jacobi type identity holds for generators of such deformations. For the σ-twisted generalization of Lie algebras modeled by this construction, we develop a theory of central extensions. We show that our approach can be used to construct new deformations of Lie ...

متن کامل

On Δ-derivations of Lie Algebras and Superalgebras

We study δ-derivations – a construction simultaneously generalizing derivations and centroid. First, we compute δ-derivations of current Lie algebras and of modular Zassenhaus algebra. This enables us to provide examples of Lie algebras having 1 2 -derivations which are divisors of zero, thus answering negatively a question of Filippov. Second, we note that δ-derivations allow, in some circumst...

متن کامل

Lie Ideals and Generalized Derivations in Semiprime Rings

Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2017

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.5012886